By Topic

A comparison of passband and baseband transmission schemes for HDSL

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. Sistanizadeh ; Bellcore, Morristown, NJ, USA ; K. J. Kerpez

Using an ideal decision feedback equalizer (DFE), the SNR of quadrature amplitude modulation (QAM) and baseband pulse amplitude modulation (PAM) in the presence of self near-end crosstalk is computed for a large sample of loops within a carrier serving area (CSA). When baud-space feedforward filters are used, PAM has 1-2 dB more SNR than QAM, where the type of PAM is the 2B1Q line code. However, when using fractionally spaced feedforward equalizers (FSEs), the SNRs of 2B1Q and QAM are almost equal for loops at the extreme range of a CSA. Four- and 16-state trellis-coded modulation is applied to PAM and QAM. Coded and uncoded PAM and QAM are simulated with parallel decision feedback estimation. Viterbi receivers and coding gains are computed. QAM has up to 1 dB higher coding gains that PAM. However, the higher coding gains of QAM do not compensate for the lower SNR of uncoded QAM, and coded QAM has worse performance than coded PAM in the presence of self near-end crosstalk. The error rates of PAM and QAM with impulse noise are computed using a collection of measured impulse noise events. Results indicate that QAM has a lower error rate than PAM in the presence of impulse noise

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:9 ,  Issue: 6 )