By Topic

Energy-efficient design of battery-powered embedded systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Simunic, T. ; Stanford Univ., CA, USA ; Benini, L. ; De Micheli, G.

Energy-efficient design of battery-powered systems demands optimizations in both hardware and software. We present a modular approach for enhancing instruction level simulators with cycle-accurate simulation of energy dissipation in embedded systems. Our methodology has tightly coupled component models thus making our approach more accurate. Performance and energy computed by our simulator are within a 5% tolerance of hardware measurements on the SmartBadge. We show how the simulation methodology can be used for hardware design exploration aimed at enhancing the SmartBadge with real-time MPEG video feature. In addition, we present a profiler that relates energy consumption to the source code. Using the profiler we can quickly and easily redesign the MP3 audio decoder software to run in real time on the SmartBadge with low energy consumption. Performance increase of 92% and energy consumption decrease of 77% over the original executable specification have been achieved.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:9 ,  Issue: 1 )