By Topic

Inductance on silicon for sub-micron CMOS VLSI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Priore, D.A. ; Digital Equipment Corp., Hudson, MA, USA

It has long been customary for silicon-based IC designers to restrict their attention to resistive and capacitive effects when considering circuits confined to the chip. The simple justification for this approach has been that typical "RC" time constants in this environment dwarf the "time of flight" of light across the distances involved. However, with the advent of large chips running at upwards of 100MHz, this assumption is called into question. Furthermore, due to the lossy nature of the silicon environment, the "time of flight" in question does not follow simply from the delay rate of light in silicon dioxide (i.e. 66ps/cm). In general, it is greater. This paper attempts to frame the problem and suggest design principles to deal with it. These principles have been used extensively in the design of a 200MHz 64-bit dual-issue CMOS microprocessor.

Published in:

VLSI Circuits, 1993. Digest of Technical Papers. 1993 Symposium on

Date of Conference:

19-21 May 1993