By Topic

FIR response of intrinsic Josephson junctions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
S. Rother ; Phys. Inst. III, Univ. Erlangen-Nurnberg, Germany ; Y. Koval ; P. Muller ; R. Kleiner
more authors

We present experiments on the far infrared response of intrinsic Josephson junctions in Bi2Sr2CaCu2O8+x (BSCCO). We detected first order Shapiro steps on resistive branches in a frequency range between 584 GHz and 2.5 THz. Due to the very low power coupled into the junctions the suppression of the critical current was only weak. With increasing number of junctions in the resistive state a higher amplitude of the Shapiro steps was measured. As the frequencies are well above the plasma frequency of our junctions, the steps are expected to be stable at any power level. To verify this, step heights were studied at various power levels as a function of frequency. The impedance matching of the system improved considerably when several junctions have switched into the resistive state

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:11 ,  Issue: 1 )