By Topic

Off-line recognition of isolated Persian handwritten characters using multiple hidden Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Dehghani ; Dept. of Electr. & Electron. Eng., Shiraz Univ., Iran ; F. Shabini ; P. Nava

In this paper a new method for off-line recognition of isolated handwritten Persian characters based on hidden Markov models (HMMs) is proposed. In the proposed system, document images are acquired in 300-dpi resolution. Multiple filters such as median and morphologal filters are utilized for noise removal. The features used in this process are methods based on regional projection contour transformation (RPCT). In this stage, two types of feature vectors, based on this technique, are extracted. The recognition system consists of two stages. For each character in the training phase, multiple HMMs corresponding to different feature vectors are built. In the classification phase, the results of the individual classifiers are integrated to produce the final recognition

Published in:

Information Technology: Coding and Computing, 2001. Proceedings. International Conference on

Date of Conference:

Apr 2001