Cart (Loading....) | Create Account
Close category search window
 

A study of networks simulation efficiency: fluid simulation vs. packet-level simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Benyuan Liu ; Dept. of Comput. Sci., Massachusetts Univ., Amherst, MA, USA ; Figueiredo, D.R. ; Yang Guo ; Kurose, J.
more authors

Network performance evaluation through traditional packet-level simulation is becoming increasingly difficult as today's networks grow in scale along many dimensions. As a consequence, fluid simulation has been proposed to cope with the size and complexity of such systems. This study focuses on analyzing and comparing the relative efficiencies of fluid simulation and packet-level simulation for several network scenarios. We use the “simulation event” rate to measure the computational effort of the simulators and show that this measure is both adequate and accurate. For some scenarios, we derive analytical results for the simulation event rate and identify the major factors that contribute to the simulation event rate. Among these factors, the “ripple effect” is very important since it can significantly increase the fluid simulation event rate. For a tandem queueing system, we identify the boundary condition to establish regions where one simulation paradigm is more efficient than the other. Flow aggregation is considered as a technique to reduce the impact of the “ripple effect” in fluid simulation. We also show that WFQ scheduling discipline can limit the “ripple effect”, making fluid simulation particularly well suited for WFQ models. Our results show that tradeoffs between parameters of a network model determines the most efficient simulation approach

Published in:

INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE  (Volume:3 )

Date of Conference:

2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.