By Topic

Efficient exact two-level hazard-free logic minimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Myers, C. ; Dept. of Electr. Eng., Utah Univ., Salt Lake City, UT, USA ; Jacobson, H.

This paper presents a new approach to two-level hazard free sum-of-products logic minimization. No currently available minimizers for single-output literal-exact two-level hazard-free logic minimization can handle large circuits without synthesis times ranging up over thousands of seconds. The logic minimization approach presented in this paper is based on state graph exploration in conjunction with single-cube cover algorithms. Our algorithm achieves fast logic minimization by using compacted state graphs and cover tables and an efficient algorithm for single-output minimization. Our exact two-level hazard-free logic minimizer finds a minimal number of literal solutions and is significantly faster than existing literal exact methods-over two orders of magnitude faster for the largest extended burst-mode benchmarks to date. This includes a benchmark that has never been possible to solve exactly in a number of literals before

Published in:

Asynchronus Circuits and Systems, 2001. ASYNC 2001. Seventh International Symposium on

Date of Conference:

2001