Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Evaluating the effects of branch prediction accuracy on the performance of SMT architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Goncalves, R. ; Dept. de Inf., Univ. Estadual de Maringa, Maringa, Brazil ; Pilla, M. ; Pizzol, G. ; Santos, T.
more authors

Branch instruction occurrence reduces the parallelism exploited from the source code of single-threaded applications. In order to reduce the branch penalty, several branch predictor techniques have been proposed. Branch predictors allow the fetch unit to continue fetching instructions along a predicted path after a conditional branch has been detected. Such techniques, when used in conventional superscalar architectures, may reach more than 95% of accuracy. These same techniques are also used in SMT architectures. However, SMT architectures may have a different behavior due to the parallelism exploration in several threads. Moreover, the effects supported by one thread may influence also the performance of other threads. In this work, we vary the accuracy of the branch predictor in order to evaluate the impact on the performance of a SMT architecture. Even though the SMT and superscalar have a different behavior, we observed that the effect of the improvement in the prediction accuracy is similar for both architectures

Published in:

Parallel and Distributed Processing, 2001. Proceedings. Ninth Euromicro Workshop on

Date of Conference: