By Topic

A novel induction machine design suitable for inverter-driven variable speed systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Z. M. Zhao ; Dept. of Electr. Eng., Tsinghua Univ., Beijing, China ; S. Meng ; C. C. Chan ; E. W. C. Lo

Induction machines designed for inverter-driven variable speed systems are different from those fed directly from a utility power line. In this paper, a novel design approach for inverter driven induction machines is presented and implemented. This is followed by an investigation on sizing equations and rotor slot shape specifically for this purpose. The proposed approach permits the integration of the design of machines with inverters, comprehensive performance analysis, and system optimization, resulting in 20-30% higher power density for the induction machine than those designed for direct utility power supplies by conventional methods. Simulation analysis and experimental results are presented to substantiate the conclusions

Published in:

IEEE Transactions on Energy Conversion  (Volume:15 ,  Issue: 4 )