By Topic

Evolving color recipes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mizutani, E. ; Dept. of Comput. Sci., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Takagi, H. ; Auslander, D.M. ; Jang, J.-S.R.

This paper highlights an evolutionary computing intelligence for a computerized color recipe prediction that requires function approximation and combinatorial solution of colorants to produce color recipes for a given target color sample. We attack this real challenging problem in the color (paint) industry by using an evolutionary computing system that consists of a problem-specific knowledge and three principal constituents of soft-computing: neural networks, a fuzzy system, and a genetic algorithm. Departing from the recipe results obtained by neural networks (NN) approaches, the evolutionary system attempts to improve them in conjunction with fuzzy classification, a knowledge base and neural fitness functions. All components function synergistically in obtaining precise color recipe outputs through simulation of color paint manufacturing process. Such computational intelligence can be useful, especially when an exact mathematical model of the real-world process under consideration is not available explicitly

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:30 ,  Issue: 4 )