By Topic

Trans-dichotomous algorithms for minimum spanning trees and shortest paths

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fredman, Michael L. ; California, Univ., La Jolla, CA, USA ; Willard, D.E.

The fusion tree method is extended to develop a linear-time algorithm for the minimum spanning tree problem and an O(m +n log n/log log n) implementation of Dijkstra's shortest-path algorithm for a graph with n vertices and m edges. The shortest-path algorithm surpasses information-theoretic limitations. The extension of the fusion tree method involves the development of a new data structure, the atomic heap. The atomic heap accommodates heap (priority queue) operations in constant amortized time under suitable polylog restrictions on the heap size. The linear-time minimum spanning tree algorithm results from a direct application of the atomic heap. To obtain the shortest path algorithm, the atomic heap is used as a building block to construct a new data structure, the AF-heap, which has no size restrictions and surpasses information theoretic limitations. The AF-heap belongs to the Fibonacci heap family

Published in:

Foundations of Computer Science, 1990. Proceedings., 31st Annual Symposium on

Date of Conference:

22-24 Oct 1990