By Topic

Deciding properties of nonregular programs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Harel ; Dept. of Appl. Math. & Comput. Sci., Weizmann Inst. of Sci. Rehovot, Israel ; D. Raz

The problem of deciding the validity of formulas in extensions of propositional dynamic logic (PDL) is considered. The extensions are obtained by adding programs defined by nonregular languages. In the past, a number of very simple languages were shown to render this problem highly undecidable, whereas other very similar-looking languages were shown to retain decidability. Understanding this rather strange phenomenon and generalizing the isolated extensions have remained elusive. The authors provide decision procedures for two wide classes of extensions, thus shedding light on the general problem. The proofs are novel, in that they explicitly consider the machines that accept the languages, in this case special classes of PDAs and stack automata. It is shown that the emptiness problem for stack automata on infinite trees is decidable, a result of independent interest, and the result is combined with the construction of certain tree models for the corresponding formulas

Published in:

Foundations of Computer Science, 1990. Proceedings., 31st Annual Symposium on

Date of Conference:

22-24 Oct 1990