By Topic

Uniform memory hierarchies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
B. Alpern ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; L. Carter ; E. Feig

The authors introduce a model, called the uniform memory hierarchy (UMH) model, which reflects the hierarchical nature of computer memory more accurately than the RAM (random-access-machine) model, which assumes that any item in memory can be accessed with unit cost. In the model memory occurs as a sequence of increasingly large levels. Data are transferred between levels in fixed-size blocks (the size is level dependent). Within a level blocks are random access. The model is easily extended to handle parallelism. The UMH model is really a family of models parameterized by the rate at which the bandwidth decays as one travels up the hierarchy. A program is parsimonious on a UMH if the leading terms of the program's (time) complexity on the UMH and on a RAM are identical. If these terms differ by more than a constant factor, then the program is inefficient. The authors analyze two standard FFT programs with the same RAM complexity. One is efficient; the other is not

Published in:

Foundations of Computer Science, 1990. Proceedings., 31st Annual Symposium on

Date of Conference:

22-24 Oct 1990