By Topic

A precise numerical prediction of effective dielectric constant for polymer-ceramic composite based on effective-medium theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yang Rao ; Sch. of Mater. Sci. & Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Qu, J. ; Marinis, T. ; Wong, C.P.

Nanostructure polymer-ceramic composite with high dielectric constant (ετ~90) has been developed for embedded capacitor application. This polymer-ceramic system consists of lead magnesium niobate-lead titanate (PMN-PT) ceramic particle and modified high-dielectric constant low-viscosity epoxy resin. In order to obtain precise prediction of effective dielectric constant of this composite, an empirical prediction model based on self-consistent theory is proposed. The electrical polarization mechanism and interaction between epoxy resin and ceramic filler has been studied. This model can establish the relevant constitutional parameters of polymer-ceramic composite materials such as particle shape, composition, and connectivity that determine the dielectric properties of the composite. This model is simpler, uses fewer parameters and its prediction compares better with experiment (error <10%). The precision and simplicity of the model can be exploited for predictions of the properties and design of nanostructure ferroelectric polymer-ceramic composites. The effective-medium theory (EMT) has been proved a good tool to predict effective properties of nanocomposites

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:23 ,  Issue: 4 )