By Topic

Modeling stripline discontinuities by neural network with knowledge-based neurons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bing-Zhong Wang ; Inst. of Appl. Phys., Univ. of Electron. Sci. & Technol. of China, Chengdu, China ; Deshuang Zhao ; Jingsong Hong

A three-layer neural network with knowledge-based neurons in the hidden layer (NNKBN) is presented for modeling stripline discontinuities. In NNKBN, prior knowledge for stripline discontinuity is incorporated into each hidden neuron. With knowledge-based neurons, the learning ability and generalization of the neural network are improved. Compared with conventional multi-layer perceptron neural network, the NNKBN can map the input-output relationships with fewer hidden neurons and has higher reliability for extrapolation beyond training data range. Two examples are given to illustrate the potential power of this approach.

Published in:

IEEE Transactions on Advanced Packaging  (Volume:23 ,  Issue: 4 )