Cart (Loading....) | Create Account
Close category search window
 

Estimation of the correlation amplitude of RF signals in small cutaneous vessels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gens, F. ; GIP Ultrasons-EA, Tours, France ; Remeuieras, J.-P. ; Diridollou, S. ; Patat, F.

Time domain correlation technique is a widely used method for blood flow velocity measurement. The time shift between a pair of windowed ultrasonic echoes is estimated by searching the temporal position of the maximum of the interpolated normalized correlation function. Between two consecutive echoes, the acoustical footprint of a group of scatterers, which are transported with the flow, moves and is deformed. This implies a decreasing of the amplitude of the normalized correlation coefficient. In the case of microcirculation (low flow rate, low SNR), the amplitude of the correlation peak can be used to detect the presence of blood flow and to discriminate false and true detections (reliability index). We have numerically evaluated the statistical performances of the cross-correlation algorithm used as a correlation peak amplitude estimator in severe conditions (short correlation window length, low SNR). These theoretical results have been compared with in vitro experimentation on a 100-/spl mu/m-diameter microcirculatory phantom and with in vivo experimentation on a 180-/spl mu/m-diameter vessel of a human leg carrying erysipelas.

Published in:

Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on  (Volume:47 ,  Issue: 6 )

Date of Publication:

Nov. 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.