By Topic

Reliable low-power design in the presence of deep submicron noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shanbhag, N. ; Coordinated Sci. Lab., Illinois Univ., Urbana, IL, USA ; Soumyanath, K. ; Martin, S.

Scaling of feature sizes in semiconductor technology has been responsible for increasingly higher computational capacity of silicon. This has been the driver for the revolution in communications and computing. However, questions regarding the limits of scaling (and hence Moore's Law) have arisen in recent years due to the emergence of deep submicron noise. This paper describes noise in deep submicron CMOS and its impact on digital as well as analog circuits. In particular, noise-tolerance is proposed as an effective means for achieving energy and performance efficiency in the presence of DSM noise.

Published in:

Low Power Electronics and Design, 2000. ISLPED '00. Proceedings of the 2000 International Symposium on

Date of Conference:

2000