By Topic

Tradeoffs and design of an ultra low power UHF transceiver integrated in a standard digital CMOS process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. -S. Porret ; Electron. Lab., Swiss Federal Inst. of Technol., Lausanne, Switzerland ; T. Melly ; E. A. Vittoz ; C. C. Enz

A broad range of high-volume consumer applications require low-power, battery operated, wireless microsystems and sensors. These systems should reconcile a sufficient battery lifetime with reduced dimensions, low cost and versatility. The design of such systems highlights many tradeoffs between performances, lifetime, cost and power consumption. Also, special circuit and design techniques are needed to comply with the reduced supply voltage (down to 1 V). These considerations are illustrated by design examples taken from a transceiver chip realized in a standard 0.5 /spl mu/m digital CMOS process. The chip is dedicated to a distributed sensors network and is based on a direct-conversion architecture. The circuit prototype operates in the 434 MHz ISM band and consumes only 1 mW in receive mode. It achieves a -95 dBm sensitivity for a data rate of 24 kbit/s. The transmitter section is designed for 0 dBm output power under the minimum 1 V supply, with a global efficiency higher than 15%.

Published in:

Low Power Electronics and Design, 2000. ISLPED '00. Proceedings of the 2000 International Symposium on

Date of Conference:

26-27 July 2000