By Topic

Application of genetic programming for multicategory pattern classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kishore, J.K. ; Dept. of Aerosp. Eng., Indian Inst. of Sci., Bangalore, India ; Patnaik, L.M. ; Mani, V. ; Agrawal, V.K.

Explores the feasibility of applying genetic programming (GP) to multicategory pattern classification problem. GP can discover relationships and express them mathematically. GP-based techniques have an advantage over statistical methods because they are distribution-free, i.e., no prior knowledge is needed about the statistical distribution of the data. GP also automatically discovers the discriminant features for a class. GP has been applied for two-category classification. A methodology for GP-based n-class classification is developed. The problem is modeled as n two-class problems, and a genetic programming classifier expression (GPCE) is evolved as a discriminant function for each class. The GPCE is trained to recognize samples belonging to its own class and reject others. A strength of association (SA) measure is computed for each GPCE to indicate the degree to which it can recognize samples of its own class. SA is used for uniquely assigning a class to an input feature vector. Heuristic rules are used to prevent a GPCE with a higher SA from swamping one with a lower SA. Experimental results are presented to demonstrate the applicability of GP for multicategory classification, and they are found to be satisfactory. We also discuss the various issues that arise in our approach to GP-based classification, such as the creation of training sets, the role of incremental learning, and the choice of function set in the evolution of GPCE, as well as conflict resolution for uniquely assigning a class

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:4 ,  Issue: 3 )