By Topic

Test-case generator for nonlinear continuous parameter optimization techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Michalewicz, Z. ; Dept. of Comput. Sci., North Carolina Univ., Charlotte, NC, USA ; Deb, K. ; Schmidt, M. ; Stidsen, T.

The experimental results reported in many papers suggest that making an appropriate a priori choice of an evolutionary method for a nonlinear parameter optimization problem remains an open question. It seems that the most promising approach at this stage of research is experimental, involving the design of a scalable test suite of constrained optimization problems, in which many features could be tuned easily. It would then be possible to evaluate the merits and drawbacks of the available methods, as well as to test new methods efficiently. In this paper, we propose such a test-case generator for constrained parameter optimization techniques. This generator is capable of creating various test problems with different characteristics including: 1) problems with different relative sizes of the feasible region in the search space; 2) problems with different numbers and types of constraints; 3) problems with convex or nonconvex evaluation functions, possibly with multiple optima; and 4) problems with highly nonconvex constraints consisting of (possibly) disjoint regions. Such a test-case generator is very useful for analyzing and comparing different constraint-handling techniques

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:4 ,  Issue: 3 )