By Topic

Resolution and noise properties of MAP reconstruction for fully 3-D PET

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jinyi Qi ; Signal & Image Process. Inst., Univ. of Southern California, Los Angeles, CA, USA ; Leahy, R.M.

Derives approximate analytical expressions for the local impulse response and covariance of images reconstructed from fully three-dimensional (3-D) positron emission tomography (PET) data using maximum a posteriori (MAP) estimation. These expressions explicitly account for the spatially variant detector response and sensitivity of a 3-D tomograph. The resulting spatially variant impulse response and covariance are computed using 3-D Fourier transforms. A truncated Gaussian distribution is used to account for the effect on the variance of the nonnegativity constraint used in MAP reconstruction. Using Monte Carlo simulations and phantom data from the microPET small animal scanner, the authors show that the approximations provide reasonably accurate estimates of contrast recovery and covariance of MAP reconstruction for priors with quadratic energy functions. They also describe how these analytical results can be used to achieve near-uniform contrast recovery throughout the reconstructed volume.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:19 ,  Issue: 5 )