By Topic

A fast parallel multiplier-accumulator using the modified Booth algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
F. Elguibaly ; Dept. of Electr. & Comput. Eng., Victoria Univ., BC, Canada

This paper presents a dependence graph (DG) to visualize and describe a merged multiply-accumulate (MAC) hardware that is based on the modified Booth algorithm (MBA). The carry-save technique is used in the Booth encoder, the Booth multiplier, and the accumulator sections to ensure the fastest possible implementation. The DG applies to any MAC data word size and allows designing multiplier structures that are regular and have minimal delay, sign-bit extensions, and datapath width. Using the DG, a fast pipelined implementation is proposed, in which an accurate delay model for deep submicron CMOS technology is used. The delay model describes multi-level gate delays, taking into account input ramp and output loading. Based on the delay model, the proposed pipelined parallel MAC design is three times faster than other parallel MAC schemes that are based on the MBA. The speedup resulted from merging the accumulate and the multiply operations and the wide use of carry-save techniques

Published in:

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing  (Volume:47 ,  Issue: 9 )