Cart (Loading....) | Create Account
Close category search window
 

Distribution system power flow analysis-a rigid approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chen, T.-H. ; energy Syst. Res. Center, Texas Univ., Arlington, TX, USA ; Mo-Shing Chen ; Hwang, K.-J. ; Kotas, P.
more authors

This approach is oriented toward applications in three phase distribution system operational analysis rather than planning analysis. The solution method is the optimally ordered triangular factorization Y BUS method (implicit ZBUS Gauss method) which not only takes advantage of the sparsity of system equations but also has very good convergence characteristics on distribution problems. Detailed component models are needed for all system components in the simulation. Utilizing the phase frame representation for all network elements, a program called Generalized Distribution Analysis Systems, with a number of features and capabilities not found in existing packages, has been developed for large-scale distribution system simulations. The system being analyzed can be balanced or unbalanced and can be a radial, network, or mixed-type distribution system. Furthermore, because the individual phase representation is employed for both system and component models, the system can comprise single, double, and three-phase systems simultaneously

Published in:

Power Delivery, IEEE Transactions on  (Volume:6 ,  Issue: 3 )

Date of Publication:

Jul 1991

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.