Cart (Loading....) | Create Account
Close category search window
 

Phase noise measurements of 10-MHz BVA quartz crystal resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sthal, F. ; Ecole Nat. Superieure de Mecanique et des Microtechnique, Besancon, France ; Mourey, M. ; Marionnet, F. ; Walls, W.F.

In this paper, we review a new piece of equipment that allows one to characterize the phase noise of crystal resonators using a phase bridge system with carrier suppression. This equipment allows one to measure the inherent phase stability of quartz crystal resonators in a passive circuit without the noise usually associated with an active oscillator. We achieved a system noise floor of approximately -150 dBc/Hz at 1 Hz and -160 dBc/Hz, at 10 Hz. A SPICE characterization of the carrier suppression system is given. An investigation of the phase modulation (PM) noise in 10 MHz BVA, SC-cut quartz crystal resonator pairs is presented.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:47 ,  Issue: 2 )

Date of Publication:

March 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.