Cart (Loading....) | Create Account
Close category search window

Lossless sliding-block compression of constrained systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fan, J.L. ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; Marcus, B.H. ; Roth, R.M.

A method is presented for designing lossless sliding-block compression schemes that map constrained sequences onto unconstrained ones. The new compression scheme is incorporated into a coding technique for noisy constrained channels, which has applications to magnetic and optical storage. As suggested previously by Immink (see ibid., vol.43, p.1389-99, 1997), the use of a lossless compression code can improve the performance of a modified concatenation scheme where the positions of the error-correcting code and constrained code are reversed (primarily in order to eliminate error propagation due to the constrained code). Examples are presented that demonstrate the advantage of using sliding-block compression over block compression in a noisy constrained setting

Published in:

Information Theory, IEEE Transactions on  (Volume:46 ,  Issue: 2 )

Date of Publication:

Mar 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.