By Topic

On the theory of space-time codes for PSK modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hammons, A.R., Jr. ; Hughes Network Syst. Inc., Germantown, MD, USA ; El Gamal, H.

The design of space-time codes to achieve full spatial diversity over fading channels has largely been addressed by handcrafting example codes using computer search methods and only for small numbers of antennas. The lack of more general designs is in part due to the fact that the diversity advantage of a code is the minimum rank among the complex baseband differences between modulated codewords, which is difficult to relate to traditional code designs over finite fields and rings. We present general binary design criteria for PSK-modulated space-time codes. For linear BPSK/QPSK codes, the rank of (binary projections of) the unmodulated codewords, as binary matrices over the binary field, is a sufficient design criterion: full binary rank guarantees full spatial diversity. This criterion accounts for much of what is currently known about PSK-modulated space-time codes. We develop new fundamental code constructions for both quasi-static and time-varying channels. These are perhaps the first general constructions-other than delay diversity schemes-that guarantee full spatial diversity for an arbitrary number of transmit antennas

Published in:

Information Theory, IEEE Transactions on  (Volume:46 ,  Issue: 2 )