By Topic

Simulation of interferometric SAR response for characterizing the scattering phase center statistics of forest canopies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sarabandi, K. ; Radiation Lab., Michigan Univ., Ann Arbor, MI, USA ; Lin, Y.-C.

A coherent scattering model for tree canopies is employed in order to characterize the sensitivity of an interferometric SAR (INSAR) response to the physical parameters of forest stands. The concept of an equivalent scatterer for a collection of scatterers within a pixel, representing the vegetation particles of tree structures, is used for identifying the scattering phase center of the pixel whose height is measured by an INSAR. Combining the recently developed coherent scattering model for tree canopies and the INSAR Δk-radar-equivalence algorithm, accurate statistics of the scattering phase-center location of forest stands are obtained numerically for the first time. The scattering model is based on a Monte Carlo simulation of scattering from fractal-generated tree structures, and therefore is capable of preserving the absolute phase of the backscatter. The model can also account for coherent effects due to the relative position of individual scatterers and the inhomogeneous extinction experienced by a coherent wave propagating through the random collection of vegetation particles. The location of the scattering phase center and the correlation coefficient are computed using the Δk-radar equivalence simply by simulating the backscatter response at two slightly different frequencies. The model is successfully validated using the measured data acquired by JPL TOPSAR over a selected pine stand in Raco, MI. A sensitivity analysis is performed to characterize the response of coniferous and deciduous forest stands to a multifrequency and multipolarization INSAR in order to determine an optimum system configuration for remote sensing of forest parameters

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:38 ,  Issue: 1 )