By Topic

Control performance in the horizontal plane of a fish robot with mechanical pectoral fins

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
N. Kato ; Dept. of Marine Design & Eng., Tokai Univ., Shizuoka, Japan

The mechanism of locomotion of aquatic animals can provide us with new insight into the maneuverability and stabilization of underwater robots. This paper focuses on biomimesis in the maneuvering performance of aquatic animals to develop a new device for maneuvering underwater robots. In this paper, guidance and control in the horizontal plane of a fish robot equipped with a pair of two-motor-driven mechanical pectoral fins on both sides of the robot in water currents is presented. The fish robot demonstrates high performance in terms of maneuverability in such activities as lateral swimming. The use of fuzzy control enables the fish robot to perform rendezvous and docking with an underwater post in water currents.

Published in:

IEEE Journal of Oceanic Engineering  (Volume:25 ,  Issue: 1 )