By Topic

Optimal robot plant planning using the minimum-time criterion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bobrow, J.E. ; Dept. of Mech. Eng., California Univ., Irvine, CA, USA

A path planning technique is presented which produces time-optimal manipulator motions in a workspace containing obstacles. The full nonlinear equations of motion are used in conjunction with the actuator limitations to produce optimal trajectories. The Cartesian path of the manipulator is represented with B-spline polynomials, and the shape of this path is varied in a manner that minimizes the traversal time. Obstacle avoidance constraints are included in the problem through the use of distance functions. In addition to computing the optimal path, the time-optimal open-loop joint forces and corresponding joint displacements are obtained as functions of time. The examples presented show a reduction in the time required for typical motions

Published in:

Robotics and Automation, IEEE Journal of  (Volume:4 ,  Issue: 4 )