By Topic

Combined classifiers for invariant face recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tolba, A.S. ; Dept. of Phys., Kuwait Univ., Safat, Kuwait ; Abu-Rezq, A.N.

We present a system for invariant face recognition. A combined classifier uses the generalization capabilities of both learning vector quantization (LVQ) and radial basis function (RBF) neural networks to build a representative model of a face from a variety of training patterns with different poses, details and facial expressions. The combined generalization error of the classifier is found to be lower than that of each individual classifier. A new face synthesis method is implemented for reducing the false acceptance rate and enhancing the rejection capability of the classifier. The system is capable of recognizing a face in less than one second. The system is tested on the well-known ORL database. The system performance compares favorably with the state-of-the-art systems. In the case of the ORL database, a correct recognition rate of 99.5% at 0.5% rejection rate is achieved. This rate compares favorably with the rates achieved by other systems on the same database. The volumetric frequency domain representation resulted in a rate of 92.5% while the combination of a convolutional neural network and self-organizing map resulted in 96.2% for the same number of training faces (five) per person in a database representing 40 people

Published in:

Information Intelligence and Systems, 1999. Proceedings. 1999 International Conference on

Date of Conference:

1999