By Topic

Phase change in microchannel heat sinks with integrated temperature sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Linan Jiang ; Dept. of Mech. Eng., Hong Kong Univ. of Sci. & Technol., Hong Kong ; Man Wong ; Zohar, Y.

A unique technique of mask-less and self-aligned silicon etch between bonded wafers was developed and applied to fabricate a microchannel heat sink integrated with a heater and an array of temperature sensors. The technique allowed the formation of self-aligned and self-stopped etching of grooves between the bonded wafers. The device, consisting of distributed temperature microsensors, allowed direct temperature measurements for different levels of power dissipation under forced convection using either nitrogen or water as working fluids. The measured temperature distributions are used to characterize the micro heat sink performance under forced convection boiling conditions. The onset of critical heat flux (CHF) condition was investigated for different channel sizes and liquid flow-rates. The results suggest that the bubble dynamic mechanism in the microchannel might be different compared with conventional channels

Published in:

Microelectromechanical Systems, Journal of  (Volume:8 ,  Issue: 4 )