By Topic

A Matlab-based modeling and simulation package for electric and hybrid electric vehicle design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Butler, K.L. ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; Ehsani, M. ; Kamath, P.

This paper discusses a simulation and modeling package developed at Texas A&M University, V-Elph 2.01. V-Elph facilitates in-depth studies of electric vehicle (EV) and hybrid EV (HEV) configurations or energy management strategies through visual programming by creating components as hierarchical subsystems that can be used interchangeably as embedded systems. V-Elph is composed of detailed models of four major types of components: electric motors, internal combustion engines, batteries, and support components that can be integrated to model and simulate drive trains having all electric, series hybrid, and parallel hybrid configurations. V-Elph was written in the Matlab/Simulink graphical simulation language and is portable to most computer platforms. This paper also discusses the methodology for designing vehicle drive trains using the V-Elph package. An EV, a series HEV, a parallel HEV, and a conventional internal combustion engine (ICE) driven drive train have been designed using the simulation package. Simulation results such as fuel consumption, vehicle emissions, and complexity are compared and discussed for each vehicle

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:48 ,  Issue: 6 )