By Topic

Hyperspectral data analysis and supervised feature reduction via projection pursuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jimenez, L.O. ; Dept. of Electr. & Comput. Eng., Puerto Rico Univ., Mayaguez, Puerto Rico ; Landgrebe, D.A.

As the number of spectral bands of high-spectral resolution data increases, the ability to detect more detailed classes should also increase, and the classification accuracy should increase as well. Often the number of labelled samples used for supervised classification techniques is limited, thus limiting the precision with which class characteristics can be estimated. As the number of spectral bands becomes large, the limitation on performance imposed by the limited number of training samples can become severe. A number of techniques for case-specific feature extraction have been developed to reduce dimensionality without loss of class separability. Most of these techniques require the estimation of statistics at full dimensionality in order to extract relevant features for classification. If the number of training samples is not adequately large, the estimation of parameters in high-dimensional data will not be accurate enough. As a result, the estimated features may not be as effective as they could be. This suggests the need for reducing the dimensionality via a preprocessing method that takes into consideration high-dimensional feature-space properties. Such reduction should enable the estimation of feature-extraction parameters to be more accurate. Using a technique referred to as projection pursuit (PP), such an algorithm has been developed. This technique is able to bypass many of the problems of the limitation of small numbers of training samples by making the computations in a lower-dimensional space, and optimizing a function called the projection index. A current limitation of this method is that, as the number of dimensions increases, it is likely that a local maximum of the projection index will be found that does not enable one to fully exploit hyperspectral-data capabilities

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:37 ,  Issue: 6 )