By Topic

A 130-mm2, 256-Mbit NAND flash with shallow trench isolation technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
K. Imamiya ; ULSI Device Eng. Lab., Toshiba Corp., Yokohama, Japan ; Y. Sugiura ; H. Nakamura ; T. Himeno
more authors

A 256-Mbit flash memory has been developed using a NAND cell structure with a shallow trench isolation (STI) process. A tight bit-line pitch of 0.55 μm is achieved with 0.25-μm STI. The memory cell is shrunk to 0.29 μm2, which realizes a 130-mm2 , 256-Mbit flash memory. Peripheral transistors are scaled with memory cells in order to reduce fabrication process steps. A voltage down converter, which generates 2.5-V constant internal power source, is applied to protect the scaled transistors. An improved bit-line clamp sensing scheme achieves 3.8-μs first access time in spite of long and tight pitch bit-line. A 1-kbyte page mode with 35-ns serial data out realizes 25-Mbyte/s read throughput. An incremental step pulse with a bit by bit verify scheme programs 1-k cells in 1-V Vt distribution within 200 μs. That realizes 4.4-Mbyte/s programming throughput

Published in:

IEEE Journal of Solid-State Circuits  (Volume:34 ,  Issue: 11 )