Cart (Loading....) | Create Account
Close category search window
 

Predictive path parameterization for constrained robot control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bemporad, A. ; Autom. Control Lab., Swiss Fed. Inst. of Technol., Zurich, Switzerland ; Tarn, T. ; Ning Xi

For robotic systems tracking a given geometric path, the paper addresses the problem of satisfying input and state constraints. According to a prediction of the evolution of the robot from the current state, a discrete-time device called a path governor generates online a suitable time-parameterization of the path to be tracked, by solving at fixed intervals a constrained scalar look-ahead optimization problem. Higher level switching commands are also taken into account by simply associating a different optimization criterion to each mode of operation. Experimental results are reported for a three-degree-of-freedom PUMA 560 manipulator subject to absolute position error, Cartesian velocity, and motor voltage constraints

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:7 ,  Issue: 6 )

Date of Publication:

Nov 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.