Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Theoretical optimization of self-pulsating 650-nm-wavelength AlGaInP laser diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jones, D.R. ; Sch. of Electr. Eng. & Comput. Syst., Univ. of Wales, Bangor, UK ; Rees, P. ; Pierce, I. ; Summers, H.D.

Self-pulsating laser diodes operating at a wavelength of 650 nm are attractive for high-density optical storage. The main candidate for such a device is an AlGaInP laser diode including an epitaxially integrated saturable absorber. The characteristic self-pulsation occurs due to the interplay between gain in the active region and the absorption within the structure. In the paper, we calculate the dynamics of self-pulsation in this type of AlGaInP laser diode, including a detailed description of gain and absorption within the relative sections. In particular, we identify how, by modifying the structure of the epitaxial absorber layers, we can alter the operating characteristics of these laser diodes

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:5 ,  Issue: 3 )