By Topic

The temperature dependence of 1.3- and 1.5-μm compressively strained InGaAs(P) MQW semiconductor lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Phillips, A.F. ; Dept. of Phys., Surrey Univ., Guildford, UK ; Sweeney, S.J. ; Adams, A.R. ; Thijs, P.J.A.

We have studied experimentally and theoretically the spontaneous emission from 1.3- and 1.5-μm compressively strained InGaAsP multiple-quantum-well lasers in the temperature range 90-400 K to determine the variation of carrier density n with current I up to threshold. We find that the current contributing to spontaneous emission at threshold IRad is always well behaved and has a characteristic temperature T0 (IRad)≈T, as predicted by simple theory. This implies that the carrier density at threshold is also proportional to temperature. Below a breakpoint temperature TB, we find I α nZ, where Z=2. And the total current at threshold Ith also has a characteristic temperature T0 (Ith)≈T, showing that the current is dominated by radiative transitions right up to threshold. Above TB, Z increases steadily to Z≈3 and T0 (Ith) decreases to a value less than T/3. This behavior is explained in terms of the onset of Auger recombination above TB; a conclusion supported by measurements of the pressure dependence of Ith. From our results, we estimate that, at 300 K, Auger recombination accounts for 50% of Ith in the 1.3-μm laser and 80% of Ith in the 1.5-μm laser. Measurements of the spontaneous emission and differential efficiency indicate that a combination of increased optical losses and carrier overflow into the barrier and separate confinement heterostructure regions may further degrade T0 (Ith) above room temperature

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:5 ,  Issue: 3 )