Cart (Loading....) | Create Account
Close category search window
 

Artificial curiosity based on discovering novel algorithmic predictability through coevolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Schmidhuber, J. ; IDSIA, Lugano, Switzerland

One explores a spatio-temporal domain by predicting and learning from success/failure what's predictable and what's not. The author studies a “curious” embedded agent that differs from previous explorers in the sense that it can limit its predictions to fairly arbitrary, computable aspects of event sequences and thus can explicitly ignore almost arbitrary unpredictable, random aspects. It constructs initially random algorithms mapping event sequences to abstract internal representations (IRs). It also constructs algorithms predicting IRs from IRs computed earlier. It wants to learn novel algorithms creating IRs useful for correct IR predictions, without wasting time on those learned before. This is achieved by a co-evolutionary scheme involving two competing modules co-evolutionary designing single algorithms to be executed. The modules can bet on the outcome of IR predictions computed by the algorithms they have agreed upon. If their opinions differ then the system checks who's right, punishes the loser (the surprised one), and rewards the winner. A reinforcement learning algorithm forces each module to maximise reward. This motivates both modules to lure the other into agreeing upon algorithms involving predictions that surprise it. Since each module essentially can put in its veto against algorithms it does not consider profitable, the system is motivated to focus on those computable aspects of the environment where both modules still have confident but different opinions. Once both share the same opinion on a particular issue, the winner loses a source of reward-an incentive to shift the focus of interest onto novel, yet unknown algorithms

Published in:

Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on  (Volume:3 )

Date of Conference:

1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.