Cart (Loading....) | Create Account
Close category search window
 

Sequence MAP decoding of trellis codes for Gaussian and Rayleigh channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Al-Semari, S.A. ; Dept. of Electr. Eng., King Fahd Univ. of Pet. & Miner., Dhahran, Saudi Arabia ; Alajaji, F. ; Fuja, T.

This paper considers the use of sequence maximum a posteriori (MAP) decoding of trellis codes. A MAP receiver can exploit any “residual redundancy” that may exist in the channel encoded signal in the form of memory and/or a nonuniform distribution, thereby providing enhanced performance over very noisy channels, relative to maximum likelihood (ML) decoding. The paper begins with a first-order two-state Markov model for the channel encoder input. A variety of different systems with different source parameters, different modulation schemes, and different encoder complexities are simulated. Sequence MAP decoding is shown to substantially improve performance under very noisy channel conditions for systems with low-to-moderate redundancy, with relative gain increasing as the rate increases. As a result, coding schemes with multidimensional constellations are shown to have higher MAP gains than comparable schemes with two-dimensional (2-D) constellations. The second part of the paper considers trellis encoding of the code-excited linear predictive (CELP) speech coder's line spectral parameters (LSPs) with four-dimensional (4-D) QPSK modulation. Two source LSP models are used. One assumes only intraframe correlation of LSPs while the second one models both intraframe and interframe correlation. MAP decoding gains (over ML decoding) as much as 4 dB are achieved. Also, a comparison between the conventionally designed codes and an I-Q QPSK scheme shows that the I-Q scheme achieves better performance even though the first (sampler) LSP model is used

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:48 ,  Issue: 4 )

Date of Publication:

Jul 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.