By Topic

Optimal and self-tuning deconvolution in time domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huanshui Zhang ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Inst., Singapore ; Lihua Xie ; Yeng Chai Soh

This paper is concerned with both the optimal (minimum mean square error variance) and self-tuning deconvolution problems for discrete-time systems. When the signal model, measurement model, and noise statistics are known, a novel approach for the design of the optimal deconvolution filter, predictor, and smoother is proposed based on projection theory and innovation analysis in the time domain. The estimators are given in terms of an autoregressive moving average (ARMA) innovation model and one unilateral linear polynomial equation, where the ARMA innovation model is obtained by performing one spectral factorization. A self-tuning scheme can be incorporated when the noise statistics, the input model, and/or colored noise model are unknown. The self-tuning estimator is designed by identifying two ARMA innovation models

Published in:

Signal Processing, IEEE Transactions on  (Volume:47 ,  Issue: 8 )