By Topic

Covariance estimation with limited training samples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tadjudin, S. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Landgrebe, D.A.

This paper describes a covariance estimator formulated under an empirical Bayesian setting to mitigate the problem of limited training samples in the Gaussian maximum likelihood (ML) classification for remote sensing. The most suitable covariance mixture is selected by maximizing the average leave-one-out log likelihood. Experimental results using AVIRIS data are presented

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:37 ,  Issue: 4 )