By Topic

Analysis and applications of backscattered frequency correlation function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sarabandi, K. ; Radiat. Lab., Michigan Univ., Ann Arbor, MI, USA ; Nashashibi, A.

The application of the radar backscatter frequency correlation for classification and inversion of physical parameters of terrestrial targets is investigated. Traditionally, in radar remote sensing, the backscattering coefficients and the backscatter phase difference statistics of a distributed target are considered for estimating the biophysical parameters of interest. Because of the complex nature of random media scattering problems, however, target classification and parameter inversion algorithms are very convoluted. One obvious way of enhancing the success and accuracy of an inversion algorithm is to expand the dimension of the input vector space. Depending on the radar parameters, such as footprint (pixel) size, incidence angle, and the target attributes (physical parameters), the backscatter signal decorrelates as function of frequency. In this paper, analytical and experimental procedures are developed to establish a relationship between the complex frequency correlation function (FCF) of the backscatter and the radar and target attributes. Specifically, two classes of distributed targets are considered: 1) rough surfaces and 2) random media. Analytical expressions for the frequency correlation function are derived and it is shown that the effect of radar parameters can be expressed explicitly and thus removed from the measured correlation functions. The University of Michigan wideband polarimetric scatterometer systems are used to verify the theoretical models and inversion algorithms developed in this study

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:37 ,  Issue: 4 )