By Topic

An efficient VLSI architecture for 2-D wavelet image coding with novel image scan

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

A folded very large scale integration (VLSI) architecture is presented for the implementation of the two-dimensional discrete wavelet transform, without constraints on the choice of the wavelet-filter bank. The proposed architecture is dedicated to flexible block-oriented image processing, such as adaptive vector quantization used in wavelet image coding. We show that reading the image along a two-dimensional (2-D) pseudo-fractal scan creates a very modular and regular data flow and, therefore, considerably reduces the folding complexity and memory requirements for VLSI implementation. This leads to significant area savings for on-chip storage (up to a factor of two) and reduces the power consumption. Furthermore, data scheduling and memory management remain very simple. The end result is an efficient VLSI implementation with a reduced area cost compared to the conventional approaches, reading the input data line by line.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:7 ,  Issue: 1 )