Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Power management in high-level synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lakshminarayana, G. ; Comput. & Commun. Res. Labs., NEC Res. Inst., Princeton, NJ, USA ; Raghunathan, A. ; Jha, N.K. ; Dey, S.

In this paper, we present a power-management methodology targeted toward high-level synthesis of data-dominated behavioral descriptions. It is founded on the observation that variable assignment can significantly affect power-management opportunities in the synthesized architecture, i.e., variable assignment determines whether or not spurious operations get executed by functional units in the architecture. We introduce perfectly power managed architectures, whose functional units do not execute any spurious operations. We present a variable assignment technique which, when used in high-level synthesis, produces architectures which are perfectly power-managed. Unlike many previously proposed power-management techniques, our method does not add latches or any other circuitry in front of functional units or registers and is, therefore, free of the attendant performance penalty. Experimental results indicate savings of up to 52.5% (average 23.0%) in power consumption over already power-optimized architectures. The area overheads due to our technique are also low and averaged 2.5% for our examples.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:7 ,  Issue: 1 )