By Topic

Low-noise Ku-band MMIC balanced P-HEMT upconverter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
de la Fuente, M.L. ; Dept. de Ingenieria de Comunicaciones, Cantabria Univ., Santander, Spain ; Portilla, J. ; Pascual, J.P. ; Artal, E.

An enhanced design methodology for a low-noise Ku-band monolithic balanced high electron mobility transistor (HEMT) upconverter and its performance are presented in this paper. The mixer topology consists of a common source/common gate HEMT pair that performs the mixing and balun functions. A detailed study has been done to establish the role of the transistor model elements in the performance of the mixer. Based on this study, a new analysis is proposed to optimize the operating point of the mixer in order to get a tradeoff between conversion gain and port isolations. To combine the LO and intermediate-frequency (IF) signals, active circuits were used, as well as a high-pass filter in order to improve the isolations. The circuit size, including the filter and the combiners, is 3 mm2. On-wafer measurements show a conversion gain over 2.5 dB, with only 3 dBm of LO power. A LO/RF isolation over 27 dB was measured in the whole LO band. The LO/IF isolation is over 27 dB thanks to the low reverse gain of the combiner HEMT's. A single sideband noise figure of 7.3 dB has been obtained

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:34 ,  Issue: 2 )