By Topic

Optimal design of two-channel nonuniform-division FIR filter banks with -1, 0, and +1 coefficients

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ju-Hong Lee ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Ding-Chiang Tang

This paper deals with the optimal design of two-channel nonuniform-division filter (NDF) banks whose linear-phase FIR analysis and synthesis filters have coefficients constrained to -1, 0, and +1 only. Utilizing an approximation scheme and a weighted least squares algorithm, we present a method to design a two-channel NDF bank with continuous coefficients under each of two design criteria, namely, least-squares reconstruction error and stopband response for analysis filters and equiripple reconstruction error and least-squares stopband response for analysis filters. It is shown that the optimal filter coefficients can be obtained by solving only linear equations. In conjunction with the proposed filter structure, a method is then presented to obtain the desired design result with filter coefficients constrained to -1, 0, and +1 only. The effectiveness of the proposed design technique is demonstrated by several simulation examples

Published in:

Signal Processing, IEEE Transactions on  (Volume:47 ,  Issue: 2 )