By Topic

Observation of reduced boron penetration and gate depletion for poly-Si/sub 0.8/Ge/sub 0.2/ gated PMOS devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wen-Chin Lee ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Tsu-Jae King ; Chenming Hu

Poly-Si/sub 0.8/Ge/sub 0.2/-and poly-Si-gated PMOS capacitors with very thin gate oxides were fabricated. Boron penetration and poly-gate depletion effects (PDE) in these devices were both analyzed. Observations of smaller flat-band voltage shift and superior gate oxide reliability suggest less boron penetration problem in poly-Si/sub 0.8/Ge/sub 0.2/-gated devices. Higher dopant activation rate, higher active dopant concentration near the poly/SiO/sub 2/ interface and therefore improved PDE were also found in boron-implanted poly-Si/sub 0.8/Ge/sub 0.2/-gated devices as compared to poly-Si-gated devices. A larger process window therefore exists for a poly-Si/sub 0.8/Ge/sub 0.2/ gate technology with regard to the tradeoff between boron penetration and poly-gate depletion.

Published in:

Electron Device Letters, IEEE  (Volume:20 ,  Issue: 1 )