By Topic

The behavior of water in XLPE and EPR cables and its influence on the electric characteristics of insulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nikolajevic, S.V. ; Electr. Power Distribution Co., Belgrade, Yugoslavia

This paper presents the latest results of continuous investigations of cable insulations degradation of crosslinked polyethylene (XPLE) and ethylene-propylene with rubber based formulation (EPR) when subjected to electric stress and heating in the presence of water or water vapour. The paper deals with water absorption and diffusion in two kinds of crosslinked polyethylene insulation-dry-cured and steam-cured, and steam-cured EPR insulation. The aim of this investigation is to present the results of the influence of changing of water or water vapour pressure in the conductors of XLPE and EPR cables in different service conditions on the electric characteristics of XLPE and EPR insulations-breakdown voltage (AC BDV), dissipation factor (tan δ) and rata of partial discharge (RPD). In this paper, RPD is defined as, the maximum electrical field when the beginning partial discharge in the cable insulation and partial discharge were measured in accordance with the IEC standard. This paper also shows the relation between AC BDV and water content, and AC BDV and tan δ in XLPE and EPR insulations. In this testing the tap water was put in the cable conductors and the ends were properly closed by terminal boxes. The results indicate that the combined effects of water or water vapour, pressure, moisture, electric field and temperature will greatly accelerate deterioration of XLPE and EPR insulations

Published in:

Power Delivery, IEEE Transactions on  (Volume:14 ,  Issue: 1 )