By Topic

Adaptive hybrid clock discipline algorithm for the network time protocol

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
D. L. Mills ; Dept. of Electr. Eng., Delaware Univ., Newark, DE, USA

This paper describes the analysis, implementation, and performance of a new algorithm engineered to discipline a computer clock to a source of standard time, such as a GPS receiver or another computer synchronized to such a source. The algorithm is intended for the network time protocol (NTP), which is in widespread use to synchronize computer clocks in the global Internet, or with another functionally equivalent protocol such as DTSS or PCS. It controls the computer clock time and frequency using an adaptive-parameter hybrid phase/frequency lock feedback loop. Compared with the current NTP Version 3 algorithm, the new algorithm developed for NTP Version 4 provides improved accuracy and reduced network overhead, especially when per-packet or per-call charges are involved. The algorithm has been implemented in a special-purpose NTP simulator, which also includes the entire suite of NTP algorithms. The performance has been verified using this simulator and both synthetic data and real data from Internet time servers in Europe, Asia, and the Americas

Published in:

IEEE/ACM Transactions on Networking  (Volume:6 ,  Issue: 5 )