By Topic

FACT: a framework for the application of throughput and power optimizing transformations to control-flow intensive behavioral descriptions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lakshminarayana, G. ; Dept. of Electr. Eng., Princeton Univ., NJ, USA ; Jha, N.K.

In this paper, we present an algorithm for the application of a general class of transformations to control-flow intensive behavioral descriptions. Our algorithm is based on the observation that incorporation of scheduling information can help guide the selection and application of candidate transformations, and significantly enhance the quality of the synthesized solution. The efficacy of the selected throughput and power optimizing transformations is enhanced by the ability of our algorithm to transcend basic blocks in the behavioral description. This ability is imparted to our algorithm by a general technique we have devised. Our system currently supports associativity, commutativity, distributivity, constant propagation, code motion, and loop unrolling. It is integrated with a scheduler which performs implicit loop unrolling and functional pipelining, and has the ability to parallelize the execution of independent iterative constructs whose bodies can share resources. Other transformations can easily be incorporated within the framework. We demonstrate the efficacy of our algorithm by applying it to several commonly available benchmarks. Upon synthesis, behaviors transformed by the application of our algorithm showed up to 6-fold improvement in throughput over an existing transformation algorithm, and up to 4.5-fold improvement in power over designs produced without the benefit of our algorithm.

Published in:

Design Automation Conference, 1998. Proceedings

Date of Conference:

19-19 June 1998